Splines in the Space of Shells
نویسندگان
چکیده
Cubic splines in Euclidean space minimize the mean squared acceleration among all curves interpolating a given set of data points. We extend this observation to the Riemannian manifold of discrete shells in which the associated metric measures both bending and membrane distortion. Our generalization replaces the acceleration with the covariant derivative of the velocity. We introduce an effective time-discretization for this novel paradigm for navigating shell space. Further transferring this concept to the space of triangular surface descriptors—edge lengths, dihedral angles, and triangle areas—results in a simplified interpolation method with high computational efficiency.
منابع مشابه
Producing Gravity Acceleration at Sea Surface in Persian Gulf Using Ellipsoidal Splines
In this paper, a method is proposed for producing gravity acceleration at sea surface in the Persian Gulf. This method is based on the Geoid height from satellite altimetry, high resolution Geopotential models, and ellipsoidal splines. First, the definition of the ellipsoidal spline functions is presented in a Hilbert space, which is consisted of infinitely often differentiable functions. In or...
متن کاملINTERPOLATION BY HYPERBOLIC B-SPLINE FUNCTIONS
In this paper we present a new kind of B-splines, called hyperbolic B-splines generated over the space spanned by hyperbolic functions and we use it to interpolate an arbitrary function on a set of points. Numerical tests for illustrating hyperbolic B-spline are presented.
متن کاملارائه مدل نیمه تجربی مقدار ماده منفجره بحرانی و حد شکلپذیری برای سازهی استوانهای متصل به مخروط ناقص به روش مقیاس بندی
In this study, the impulses of explosion within an aluminum truncated cone cylinder shells, effective parameters in explosion of these structures and structure effect on blast wave have been investigated. The goals of this study have listed as follows: a) determining critical value of explosives or necessary dynamic pressure for structure failure, b) formability limit during dynamical deforma...
متن کاملConstrained Interpolation via Cubic Hermite Splines
Introduction In industrial designing and manufacturing, it is often required to generate a smooth function approximating a given set of data which preserves certain shape properties of the data such as positivity, monotonicity, or convexity, that is, a smooth shape preserving approximation. It is assumed here that the data is sufficiently accurate to warrant interpolation, rather than least ...
متن کاملHIERARCHICAL COMPUTATION OF HERMITE SPHERICAL INTERPOLANT
In this paper, we propose to extend the hierarchical bivariateHermite Interpolant to the spherical case. Let $T$ be an arbitraryspherical triangle of the unit sphere $S$ and let $u$ be a functiondefined over the triangle $T$. For $kin mathbb{N}$, we consider aHermite spherical Interpolant problem $H_k$ defined by some datascheme $mathcal{D}_k(u)$ and which admits a unique solution $p_k$in the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comput. Graph. Forum
دوره 35 شماره
صفحات -
تاریخ انتشار 2016